Menu
Skrót klawiszowy: /
Skrót klawiszowy: /

Two-level scheme for identification of the relaxation time spectrum using stress relaxation test data with the optimal choice of the time-scale factor.

AUT. KORESP. ANNA STANKIEWICZ.

Opis bibliograficzny

Two-level scheme for identification of the relaxation time spectrum using stress relaxation test data with the optimal choice of the time-scale factor. [AUT. KORESP.] ANNA STANKIEWICZ. Materials 2023 Vol. 16 Iss. 9 Article number 3565, il., bibliogr., sum. DOI: 10.3390/ma16093565
Kliknij opis aby skopiować do schowka

Szczegóły publikacji

Źródło:
Materials 2023 Vol. 16 Iss. 9, Article number 3565
Rok: 2023
Język: Angielski
Charakter formalny: Artykuł w czasopismie
Typ MNiSW/MEiN: praca oryginalna

Streszczenia

The viscoelastic relaxation spectrum is vital for constitutive models and for insight into the mechanical properties of materials, since, from the relaxation spectrum, other material functions used to describe rheological properties can be uniquely determined. The spectrum is not directly accessible via measurement and must be recovered from relaxation stress or oscillatory shear data. This paper deals with the problem of the recovery of the relaxation time spectrum of linear viscoelastic material from discrete-time noise-corrupted measurements of a relaxation modulus obtained in the stress relaxation test. A two-level identification scheme is proposed. In the lower level, the regularized least-square identification combined with generalized cross-validation is used to find the optimal model with an arbitrary time-scale factor. Next, in the upper level, the optimal time-scale factor is determined to provide the best fit of the relaxation modulus to experiment data. The relaxation time spectrum is approximated by a finite series of power–exponential basis functions. The related model of the relaxation modulus is proved to be given by compact analytical formulas as the products of power of time and the modified Bessel functions of the second kind. The proposed approach merges the technique of an expansion of a function into a series of independent basis functions with the least-squares regularized identification and the optimal choice of the time-scale factor. Optimality conditions, approximation error, convergence, noise robustness and model smoothness are studied analytically. Applicability ranges are numerically examined. These studies have proved that using a developed model and algorithm, it is possible to determine the relaxation spectrum model for a wide class of viscoelastic materials. The model is smoothed and noise robust; small model errors are obtained for the optimal time-scale factors. The complete scheme of the hierarchical computations is outlined, which can be easily implemented in available computing environment

Open Access

Tryb dostępu: otwarte czasopismo Wersja tekstu: ostateczna wersja opublikowana Licencja: Creative Commons - Uznanie Autorstwa (CC-BY) Czas udostępnienia: w momencie opublikowania

Identyfikatory

BPP ID: (46, 50566) wydawnictwo ciągłe #50566

Metryki

140,00
Punkty MNiSW/MEiN
3,100
Impact Factor
Q2
WoS

Eksport cytowania

Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.

Informacje dodatkowe

Rekord utworzony:9 maja 2023 08:53
Ostatnia aktualizacja:1 lipca 2024 11:22

Informacja o ciasteczkach (tych internetowych, nie tych słodkich i chrupiących...)

Ta strona wykorzystuje pliki cookie do poprawy funkcjonalności i analizy ruchu. Możesz zaakceptować wszystkie pliki cookie lub zarządzać swoimi preferencjami prywatności. Nawet, jeżeli nie zgodzisz się na używanie plików cookie na tej stronie, to informację o tym musimy zapamiętać w formie... pliku cookie, zatem jeżeli chcesz zadbać o swoją prywatność w pełni, zapoznaj się z informacjami, jak zupełnie wyłączyć możliwości śledzenia Ciebie w internecie.

✓ Zgadzam się ✗ Nie zgadzam się