Fixed points of G-monotone mappings in metric and modular spaces.
Opis bibliograficzny
Szczegóły publikacji
Streszczenia
Let $C$ be a bounded, closed and convex subset of a reflexive metric space with a digraph $G$ such that $G$-intervals along walks are closed and convex. In the main theorem we show that if $T\colon C\rightarrow C$ is a monotone $G$-nonexpansive mapping and there exists $c\in C$ such that $Tc\in [c,\rightarrow )_{G}$, then $T$ has a fixed point provided for each $a\in C$, $[a,a]_{G}$ has the fixed point property for nonexpansive mappings. In particular, it gives an essential generalization of the Dehaish-Khamsi theorem concerning partial orders in complete uniformly convex hyperbolic metric spaces. Some counterparts of this result for modular spaces, and for commutative families of mappings are given too.
Linki zewnętrzne
Identyfikatory
Metryki
Eksport cytowania
Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.
Informacje dodatkowe
Rekord utworzony: | 11 października 2024 08:16 |
---|---|
Ostatnia aktualizacja: | 11 października 2024 08:16 |