Chemometric and meta-heuristic algorithms to find optimal wavelengths and predict ‘Red Delicious’ apples traits using Vis-NIR.
Opis bibliograficzny
Szczegóły publikacji
Streszczenia
The potential of Vis-NIR spectroscopy (540–960 nm) in quality evaluation of Red Delicious apples was investigated. This approach can contribute to the development of portable quality assessment devices to estimate quality parameters including pH, TA, ascorbic acid, firmness, soluble solids content (SSC), and anthocyanins using machine learning. Good performances were obtained for all the tested regressors (PLSR, PCR, MLR, SVM-R, and ANN) in terms of R2, RMSE, and RPD values in cross-validation, validation, and test phases. SVM-R demonstrated slightly higher performance in predicting apples traits in validation: pH (R2 0.935, RMSEP 0.019, and RPD 3.636), TA (R2 0.932, RMSEP 0.026, and RPD 3.447), SSC (R2 0.913, RMSEP 0.174, and RPD 3.168), ascorbic acid (R2 0.938, RMSEP 0.154, and RPD 3.725), firmness (R2 0.932, RMSEP 0.311, and RPD 3.522), and anthocyanin (R2 0.921, RMSEP 0.007, and RPD 3.171). Thus, different metaheuristic variable selection techniques (including ACO, LA, GA, PSO, LCA, FOA, WCC, CUK, DSOS, ICA, and HTS) were combined with SVM to identify the most important wavelengths for practical industry applications. SVM-PSO and SVM-FOA were identified as the most effective wavelength selection methods based on average coefficient of correlation, average convergence of error, execution time, and the number of selected wavelengths.
Open Access
Linki zewnętrzne
Identyfikatory
Metryki
Eksport cytowania
Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.
Informacje dodatkowe
Rekord utworzony: | 10 czerwca 2025 09:19 |
---|---|
Ostatnia aktualizacja: | 10 czerwca 2025 09:44 |