Menu
Skrót klawiszowy: /
Skrót klawiszowy: /

Authentication of polish red wines produced from zweigelt and rondo grape varieties based on volatile compounds analysis in combination with machine learning algorithms: hotrienol as a marker of the zweigelt variety.

AUT. KORESP. ANNA STÓJ, AUT. TOMASZ CZERNECKI, AUT. KORESP. DOROTA DOMAGAŁA.

Opis bibliograficzny

Authentication of polish red wines produced from zweigelt and rondo grape varieties based on volatile compounds analysis in combination with machine learning algorithms: hotrienol as a marker of the zweigelt variety. [AUT. KORESP.] ANNA STÓJ, [AUT.] TOMASZ CZERNECKI, [AUT. KORESP.] DOROTA DOMAGAŁA. Molecules (Basel,Online) 2023 Vol. 28 Issue 4 Article number 1961, il., bibliogr., sum. DOI: 10.3390/molecules28041961
Kliknij opis aby skopiować do schowka

Szczegóły publikacji

Źródło:
MOLECULES 2023 Vol. 28 Issue 4, Article number 1961
Rok: 2023
Język: Angielski
Charakter formalny: Artykuł w czasopismie
Typ MNiSW/MEiN: praca oryginalna

Streszczenia

The aim of this study was to determine volatile compounds in red wines of Zweigelt and Rondo varieties using HS-SPME/GC-MS and to find a marker and/or a classification model for the assessment of varietal authenticity. The wines were produced by using five commercial yeast strains and two types of malolactic fermentation. Sixty-seven volatile compounds were tentatively identified in the test wines; they represented several classes: 9 acids, 24 alcohols, 2 aldehydes, 19 esters, 2 furan compounds, 2 ketones, 1 sulfur compound and 8 terpenes. 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) was found to be a variety marker for Zweigelt wines, since it was detected in all the Zweigelt wines, but was not present in the Rondo wines at all. The relative concentrations of volatiles were used as an input data set, divided into two subsets (training and testing), to the support vector machine (SVM) and k-nearest neighbor (kNN) algorithms. Both machine learning methods yielded models with the highest possible classification accuracy (100%) when the relative concentrations of all the test compounds or alcohols alone were used as input data. An evaluation of the importance value of subsets consisting of six volatile compounds with the highest potential to distinguish between the Zweigelt and Rondo varieties revealed that SVM and kNN yielded the best classification models (F-score of 1, accuracy of 100%) when 3-ethyl-4-methylpentan-1-ol or 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) or subsets containing one or both of them were used. Moreover, the best SVM model (F-score of 1) was built with a subset containing 2-phenylethyl acetate and 3-(methylsulfanyl)propan-1-ol.

Open Access

Tryb dostępu: otwarte czasopismo Wersja tekstu: ostateczna wersja opublikowana Licencja: Creative Commons - Uznanie Autorstwa (CC-BY) Czas udostępnienia: w momencie opublikowania

Identyfikatory

BPP ID: (46, 50397) wydawnictwo ciągłe #50397

Metryki

140,00
Punkty MNiSW/MEiN
4,200
Impact Factor
Q2
WoS

Eksport cytowania

Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.

Informacje dodatkowe

Rekord utworzony:20 lutego 2023 15:09
Ostatnia aktualizacja:27 czerwca 2024 14:00

Informacja o ciasteczkach (tych internetowych, nie tych słodkich i chrupiących...)

Ta strona wykorzystuje pliki cookie do poprawy funkcjonalności i analizy ruchu. Możesz zaakceptować wszystkie pliki cookie lub zarządzać swoimi preferencjami prywatności. Nawet, jeżeli nie zgodzisz się na używanie plików cookie na tej stronie, to informację o tym musimy zapamiętać w formie... pliku cookie, zatem jeżeli chcesz zadbać o swoją prywatność w pełni, zapoznaj się z informacjami, jak zupełnie wyłączyć możliwości śledzenia Ciebie w internecie.

✓ Zgadzam się ✗ Nie zgadzam się