Menu
Naciśnij / aby szukać

Jak wyszukiwać?

  • 1 Wyszukiwanie od początku wyrazu: Wyraz preane znajdzie "preanestetyczny", ale anestetyczny nie znajdzie tego słowa (wyszukiwanie patrzy tylko na początek wyrazów)
  • - Wykluczanie słów (znak minus): Poprzedzenie wyrazu znakiem - znajdzie wszystkie tytuły NIE zawierające danego słowa, np. -onkologia znajdzie prace bez słowa "onkologia"
  • " Wyszukiwanie całych fraz (cudzysłów): Cudzysłów powoduje szukanie całych ciągów znaków w tej samej kolejności. Np. "Uniwersytet Medyczny" wyszuka tylko prace z dokładnie tą nazwą, podczas gdy wpisanie bez cudzysłowu może znaleźć "Medyczny Uniwersytet"
  • Nawigacja klawiaturą: Użyj / aby otworzyć wyszukiwanie, strzałek do nawigacji po wynikach, ENTER aby przejść do wybranej pozycji, lub ESC aby zamknąć okno

Deep learning methods for improving pollen monitoring.

Opis bibliograficzny

Deep learning methods for improving pollen monitoring. [AUT. KORESP.] ELŻBIETA KUBERA, AGNIESZKA KUBIK-KOMAR, [AUT.] KRYSTYNA PIOTROWSKA-WERYSZKO, MAGDALENA SKRZYPIEC. Sensors (Basel) 2021 Vol. 21 Iss. 10 Article number 3526, il., bibliogr., sum. DOI: 10.3390/s21103526
Kliknij opis aby skopiować do schowka

Szczegóły publikacji

Źródło:
SENSORS 2021 Vol. 21 Iss. 10, Article number 3526
Rok: 2021
Język: Angielski
Charakter formalny: Artykuł w czasopismie
Typ MNiSW/MEiN: praca oryginalna

Streszczenia

The risk of pollen-induced allergies can be determined and predicted based on data derived from pollen monitoring. Hirst-type samplers are sensors that allow airborne pollen grains to be detected and their number to be determined. Airborne pollen grains are deposited on adhesive-coated tape, and slides are then prepared, which require further analysis by specialized personnel. Deep learning can be used to recognize pollen taxa based on microscopic images. This paper presents a method for recognizing a taxon based on microscopic images of pollen grains, allowing the pollen monitoring process to be automated. In this research, a deep CNN (convolutional neural network) model was built from scratch. Publicly available deep neural network models, pre-trained on image data (not including microscopic pictures), were also used. The results show that even a simple deep learning model produces quite good results when the classification of pollen grain taxa is performed directly from the images. The best deep learning model achieved 97.88% accuracy in the difficult task of recognizing three types of pollen grains (birch, alder, and hazel) with similar structures. The derived models can be used to build a system to support pollen monitoring experts in their work.

Open Access

Tryb dostępu: otwarte czasopismo Wersja tekstu: ostateczna wersja opublikowana Licencja: Creative Commons - Uznanie Autorstwa (CC-BY) Czas udostępnienia: w momencie opublikowania

Identyfikatory

BPP ID: (46, 48333) wydawnictwo ciągłe #48333

Metryki

100,00
Punkty MNiSW/MEiN
3,847
Impact Factor

Eksport cytowania

Wsparcie dla menedżerów bibliografii:
Ta strona wspiera automatyczny import do Zotero, Mendeley i EndNote. Użytkownicy z zainstalowanym rozszerzeniem przeglądarki mogą zapisać tę publikację jednym kliknięciem - ikona pojawi się automatycznie w pasku narzędzi przeglądarki.

Informacje dodatkowe

Rekord utworzony:21 maja 2021 09:53
Ostatnia aktualizacja:1 stycznia 2023 23:06

Informacja o ciasteczkach (tych internetowych, nie tych słodkich i chrupiących...)

Ta strona wykorzystuje pliki cookie do poprawy funkcjonalności i analizy ruchu. Możesz zaakceptować wszystkie pliki cookie lub zarządzać swoimi preferencjami prywatności. Nawet, jeżeli nie zgodzisz się na używanie plików cookie na tej stronie, to informację o tym musimy zapamiętać w formie... pliku cookie, zatem jeżeli chcesz zadbać o swoją prywatność w pełni, zapoznaj się z informacjami, jak zupełnie wyłączyć możliwości śledzenia Ciebie w internecie.

✓ Zgadzam się ✗ Nie zgadzam się